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A bstract—A hybrid (nonray, nonmodal) method for computing the fields

of a paraxiaf beam propagating in a multimode waveguide (paraflel-plate or

dielectric slab) at large axiaf distances is presented. The method is based

on the Fourier and Fresnel self-imaging properties of these wavegnides,

and is capable of high accuracy. The method is much more efficient than

ray or mode approaches, while giving complete field information which

coupled-power equations do not provide.

I. INTRODUCTION

M ULTIMODE optical fibers appear at present to be

the most common optical waveguiding medium for

applications in the immediate future. Incoherent sources

and relatively simple detectors can be used, and the toler-

ance problems encountered with single-mode fibers are far

less severe with such waveguides.

At present, there are essentially three methods available

for field computation in multimode waveguides. First, one

can take a pure modal approach— the excitation amplitude

of each mode is computed, and all modes are summed

together. Although in principle exact, this approach suffers

not only from the large number of modes which must be
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kept track of (100- 1000 for a typical fiber; 30-100 for a

slab geometry) but also from a large degree of cancellation

of terms in the mode sum when the field does not match

that of an individual mode. Examples of the application of

this method may be found in [1]. Although in some special

cases approximate ‘closed-form results are available, a com-

puter analysis is generally required, and roundoff errors

can be expected to accumulate, especially for large propa-

gation distances.

A second approach is that of geometrical optics (some-

times encountered as the WKB method). An excellent

discussion ‘of this approach has been given by Gloge and

Marcatili [2] (see also. [3]). Here one approximates the

effect of a large number of discrete propagating modes by

a continuously distributed propagation constant belonging

to a “continuous spectrum” of modes. These, when com-

puted under the WKII approximation, can be interpreted

as a cone of rays lying within some characteristic accep-

tance angle of the fiber. The propagation problem then

reduces to that of determining the amplitude with which

each ray is excited, and tracing it down the length of the

guide. Intuitively more suitable for multimode guides be-

cause of the “high-frequency” nature of the problem, this

approach is nonetheless approximate by virtue of the geo-

metrical optics technique. Moreover; in a situation where
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paraxial propagation conditions exist (see the following), a

large number of rays can be expected to contribute at large

propagation distances (hundreds of meters or several

kilometers may not be uncommon). In this region, the

geometrical optics approach can be seen to suffer from

similar disadvantages as does the first.

A third approach (see, e.g., [4], [5], [39]) is a purely

numerical one, wherein the partial differential equation—

Helmholtz or its parabolic approximant— is tackled di-

rectly, without the use of either mode or ray concepts. In

[4] and [5], the equation is discretized and solved with the

aid of fast Fourier transform techniques. This method, like

the first, is also capable of arbitrary accuracy in principle,

and requires neither a detailed knowledge of a large num-

ber of modes, nor the tracing of a large number of ray

paths. Again, however, when very long propagation dis-

tances are being studied, the discretization of the wave

equation in the longitudinal direction can lead to large

error accumulations which do not seem easily avoidable by

this technique.

Finally, we might also mention here the coupled-power

equations approach [1]. This method seeks only to find the

total power carried by each mode, since for many applica-

tions the details of the field distribution from each mode

are not of interest. One then takes a statistical approach to

these equations, and obtains useful results for pulse disper-

sion when each mode of the guide is detectable only

through its total power. There are many other applications,

however, when the fields themselves are important, such as

in the design of couplers, splitters, switches, splicers, etc.,

and it is this problem in which we are interested here.

The method we propose is based on the imaging proper-

ties of multimode waveguides. In the paraxial approxima-

tion, a parallel-plate or dielectric slab waveguide will

periodically reconstruct the field pattern at the input plane

(and, at more frequent intervals, a string of such replicas).

Because of this, we need only perform our field computa-

tions within the space of one of these periods, and will not

suffer the loss of accuracy at large distances associated

with the methods described above. Our computations will

be performed for a parallel-plate waveguide with perfectly

conducting walls, but the results are immediately applica-

ble to the dielectric-slab waveguide (Appendix A). The

method will allow a simple formula to be obtained for the

propagation of a Gaussian beam of substantially narrower

width than that of the guide. (Note that the study by

Felsen and Shin [6] of beam propagation in waveguides is,

in practice, restricted to beams which propagate obliquely

to the axis of the guide, and actually will suffer from the

same drawbacks at large axial distances as does the ray

method, although it is probably superior to the ray method

at shorter distances). Numerical comparisons with exact

(modal) calculations are quite favorable, even for rather
large propagation distances.

II. THE PARAXIAL APPROXIMATION

To fix ideas, let us consider the parallel-plate waveguide

illustrated in Fig. 1 (the discussion of this section, however,

is quite general and need not be restricted to this specific

Fig. 1. Parallel-plate waveguide.

waveguide). The walls at x= O and x= a are perfectly

conducting, and some known source produces a given

excitation or input field at the plane z= O. For simplicity,

we restrict ourselves to two-dimensional TE fields, so that

the entire field ~= iiXHX + ii= Hz, ~= iiY EY, where ZX, iiY, ii=

are Cartesian unit vectors, can be derived from the scalar

function EY which satisfies

(a2 )—+~+k2 EY=O
ax2 az=

(1)

for z> O. Here k= u~, where a time dependence exp(itil)

has been assumed, and p, c are the electrical parameters of

the medium filling the waveguide.

In the paraxial approximation, we write

EV(x, z)=exp-Z~zA(x, z) (2)

and assume that most propagation takes place nearly in the

z-direction; that is, A(x, z) as a function of z varies slowly

compared to exp( – ikz ). Inserting (2) into (1) we obtain

( )~–zik~+~ A(X, Z)=O (3)

and in the paraxial approximation, we neglect the ~2/i3z 2

term compared to the first derivative term because of the

slow variation of A(x, z) in z assumed above. We thus

obtain the following parabolic equation for A(x, z) [7]:

(a2 )—–2ik~ A(x, z)=O.
ax2

(4)

To put this approximation on a more quantitative foot-

ing, we can apply some ideas from the boundary-layer

technique [8]. By “stretching” the variable x into a new

variable P = x\a, we can deal with a transverse variable v

which is 0(1) over the entire cross section of the guide.

When rewritten in terms of v, equation (4) becomes

( )~–2ika2~ A(v, z)=O (5)

which suggests that the scaling f= const z/ka 2 might be

convenient. For reasons which will become clear in the

next section, we choose {= ~z/4ka2. Making both changes

of variable in (3), we have

(a2 ) m* i32A(v, {)
—–;+ A(v, {)=–=
av2 a{z

. (6)

It is natural now to assume a solution to (6) of the form

A(v, {)-flo(v, {)+--&41(v,()+*A2(V,{)+..
(7)
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so that, by matching powers of (ka)

set of equations for AO, xl 1, etc.:

(

a2 7ri a

)
~ ~ AO(ZJ, {)=O

av2

(

a2 77i a

)
—–y~ A1(v, ()=–
av2

and so on. As initial conditions

-2, we find a recurrent

(8)

‘2 a2A:’J#) (9)
z

at J= O, we require

AO(x/a, O)=EY(x, O)— a given function— while AI(v,O) =

A2(V,0)= . . .=0.

We are now in a position to estimate the magnitude of

the correction term A ~, and therefore the error involved in

the paraxial approximation. It is easily verified that, for

example,

i{ a4~O(v, {)
A,(v, f)=fi

av4

_ i7r{ azAo(v,O_.—
8 a{2

(10)

with A2, A3, etc., given by similar expressions. Because of

the scaling of the variables v and (, the differentiations in

(10) do not increase the order of magnitude of the function

Ao. Thus if A. is O(l), then

lA,(v, ol~O({) (11)

so a criterion for the accuracy of the paraxial approxima-

tion (A =Ao) is that {/k ‘a 2<1, or in other words

kz>(ka)4. (12)

In addition, of course, we also have the condition k2a2 >1,

which is implicit in the expansion (7) and the fact that the

guide is highly multimode.

These arguments are not restricted to the case of a

parallel-plate waveguide. However, as with any “order-of-

magnitude” arguments, they say nothing about the propor-

tionality constant implicit in (1 1), In fact, this constant will

depend sensitively on the function Ao(v, t), mostly through

its initial value AO( v, O). Thus, a detailed study of the

estimate (11) should be made when using the paraxial

approximation in any specific situation. This procedure is

discussed in some detail by Tappert [9], who also gives a

large number of references to its use in acoustics. In

Appendix A, we consider the paraxial approximation for a

dielectric slab waveguide, and demonstrate an approximate
equivalence with a parallel-plate waveguide.

In closing, we might also note that Polyanskii [11] has

obtained a formula relating the solution of the parabolic

equation to that of the Hehnholtz equation which is an

alternative to the perturbation series (7). This same ques-

tion is addressed from a rather different viewpoint in [36].

Further, another variant of the parabolic equation more

suitable for off-axis propagation has been proposed in [12].

III. GREEN’S FUNCTION AND IMAGING

By well-known techniques, the field EY(x, z) for z >0 in

the waveguide can be expressed in terms of the field

JTY(x, O) at an input plane (z= O) by means of a Green’s

function G(x, x’; z):

EY(x, z)=~aEY(x’, O)G(x, X’; Z)dX’ (13)
o

where G can be expressed as a modal expansion:

G(x, x’; z)=~ ~ sinYsin~exp(–i&z),
m=l

Z>() (14)

where /3~ = (k 2 —m2n 2/a2 )112. On the other hand, the

Green’s function Go for the paraxial approximation (2), (4)

to EY is given by

Go(x, x’; z)=~exp(–ikz) ~ sin%–
m=l

. sin %exp(izm2m2/2ka2). (15)

Evidently Go could have been obtained from G by replac-

ing & by the first two terms of its binomial expansion

/3~ ~k–m2~2/2ka2. We see that whereas G has a large

but finite number of modes which propagate, the paraxial

approximation Go has infinitely many such modes. It is

convenient to rewrite Go by expressing the sine functions as

exponential; the result is

GO(X, X’; z)= ~exp(–ikz) ~ exp(izm2m2/2ka2)
~.—~

. {exp[-imr(x-x’)/a] -exp[--imn(x+x’)/a] }.

(16)

If we define

Zll =4ka2/~ (17)

(so that the stretched variable of the previous section is

r=z/zl ~), then

w
Go(x, x’; z)=~exp(–ikz) ~ exp(2rim2z\z11)

~.—~

,. {exp [-imm(x-x’)/a]-exp [-imr(x+x’)/a] }.

(18)

Equation (18) is the basis for the so-called Fourier- and

Fresnel-imaging properties of this waveguide [1 3]. It is

easily seen from (18) that exp( ikz )Go is a periodic function

of z:

GO(x, x’; z+zll)=GO(x, x’; z)exp(–ikzll). (19)

In particular, since (13) implies that ‘G(x, x’; O) is equal to

8(x–x’) for OS(X, x’)<a, we have

G,(x, x’; nzll)=~(x–x’)exp (–iknzl,) (20)

for any integer n, i.e., the input plane field is replicated at

each of the Fourier image planes z= nz, ~. This phenome-

non was first investigated theoretically for unbounded peri-

odic gratings, and the imaging distance was first given by

Rayleigh [14]. Later treatments have been given in [13],

[15] -[17]. Because of the mathematical equivalence of a

waveguide with a periodic system, this imaging also occurs

in waveguides— a fact apparently first noticed by Rivlin
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and Shul’dyaev [ 18] and discussed at length by a number of

authors [10], [19]–[23], [37].

An even more interesting occurrence shows up at z = zP~,

where

z= q
P9

—z,,
P

(21)

and p and q are some positive integers. Let us consider the

sum

(22)

Let m =pl+ r, where r runs from O to p – 1, and express

(22) as a double sum

Qp,(x)= ~ ‘jlexp{ –i~x(pl+r)/a
[=–m ~=()

+2niq[p122h+r2/p] }

p–1

= ~ exp { -iTrx/a+2Tiqr2/p}
~=()

[ 1. ~exp [ –irplx/a] .
[=–*

(23)

However, the summation in parenthesis is nothing more

than Q,,( px), although now the argument can range not

just from – a to + a (or O to 2a), but from –pa to +pa

(or O to 2pa). Making use of the formula [24]

~ exp(2mimx/d)=d ~ 8(x-.G!) (24)
~.—~ ~=—~

for any positive d

QPq(x)= ~ ‘~~ exp (–imrx/a+2niqr2/p)
r

From (18), then, we have

GO(x, x’; zpq)=exp(–ikzPq) ~ c.(p, q)

[( 2na
. 8 x–x’–—

)(

2na
–8 x+x’–—

P P )1(26)

where the coefficients Ce are given by

These coefficients are known as Gaussian sums, and play a

key role in analytic number theory [25]. Their most im-

portant properties are summarized in Appendix B.
For p= 1, only one of the delta-functions 8(x –x’) is

nonzero in the range O<(x, x’)< a, and we recover the

single Fourier image described before. If p >1 on the other

hand, more of the delta-functions in (26) may appear in

this range. Each one contributes to (13) a replica of the

“’’IA.““k.
00, Oox

(a) (b)

I’yl

L!q)_
IEYI

@

Oox o ax

(c)

I’yl I
—
ax

““u‘IL
oa~ o x

(d) “

Fig. 2. Imaging of a nonsymmetncal field distribution. (a) Input func-
tion EJx, O). (b) E}(x, Z21) = E,(a–x, O) (inverted image). (c) The

three components of E,,( x,:3, )

EY(X,Z3,)=*E,(X,0)

+ exp( – zT/6)

{

–E,(2a\3-x,O), OGxG2a/3

@
EY(x–2a/3,0), 2a/3<x<a

}

+ exp(–in\6)

{

Ey(x+2a/3,0), O<x<a/3

@
–EY(4a/3–x,0),

}
a/3 GxGa

(d) The two components of EY(x, Z41)

Ey(x, z,l)=[exp(tr/4) Ey(x,0)+exp(3~z/4) EY(a-x,O)]/#.

input field which is shifted by some amount in the x-

direction, and whose amplitude is ICm(p, q)l times that of

the original image. Any terms arising from the terms

8(x +x’ – 2rza/p) are inverted as well. Images of this type

have been called Fresnel images.

For an input function not symmetric with respect to the

center of the guide x = a/2, we have depicted the various

images along with their (complex) amplitudes in Fig. 2 for

Z21, Z31, and Z41. The phase factor exp( —ikz) is omitted in

this figure. Fig. 2(a) illustrates the input function EY(x, O).

At z= Z21, there is only one image, which is inverted with

respect to the original, but is also a further 180° out of

phase with respect to the input after the factor exp( – ikz)

is accounted for (Fig. 2(b)). At z= Z3, (Fig. 2(c)), the

situation is more involved. One of the images is an un-

changed replica, reduced in amplitude by 1/G and phase

shifted by 90°. The other two image terms have “broken

up” and rearranged the original pattern. Between then,

they both contain two complete replicas of the original,

and again the amplitude of each is reduced by 1/~. Note

that this amplitude reduction is consistent with the fact

that all of the power of the original pattern must be

divided between the three split images. At z= Z41, there is

both an erect and an inverted image (Fig. 2(d)).

For the special case of a symmetric excitation, EY(x O)=
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(a) (b)

Fig. 3. Imaging of a symmetric field distribution. (a) \ EY(x, 0)1 =
\ EY(x, Z,i)l =IEY(.x, Z41)I =1 EY(x, Zsl)[. (b) The three components of

i?”(x, 23,).

.EY(a-x, O), zzl, 241, and indeed Z81 all reproduce the

original input function (Fig. 3(a)). If the input function is a

beam of sufficiently narrow width, we can recognize three

essentially distinct images at Z31 (Fig. 3(b)). At other image

planes, similar conclusions hold.

The Fourier and Fresnel images allow us, in principle, to

compute the field in the waveguide at any point, zP~ (and

any arbitrary value of z can be approached as nearly as

desired by such a point). This procedure could, however,

require a large value of p, and hence an inordinately large

number of image terms, resulting in a method which is no

more efficient than the modal approach. In the next sec-

tion, we will show how, for a certain specific type of

excitation, efficient field computation can be carried out

for any value of z, using only a relatively small number of

images.

Let us emphasize in closing this section that the imaging

phenomenon results from the collective interference of the

mode sum (14), or alternatively from the interference of the

series of “rays” (plane waves) represented by (18), depend-

ing on one’s preferred physical picture. The only assump-

tion involved is the paraxial approximation, and in the case

of the parallel-plate waveguide, no approximation of the

mode functions themselves is needed. In the case of a

dielectric waveguide, some small higher order corrections

to the mode functions will be needed (see Appendix A).

IV. PROPAGATION OF A GAUSSIAN BEAM

Consider the initial field distribution

EY(x, O)=exp [– (x–xO)2/2w~] (28)

i.e., a Gaussian beam centered at XO with waist parameter

WO.Let O<xO < a, and assume that the “tails” of the beam

are negligible at the walls of the guide:

W. <<x. wo<<a —xo.

In addition, we also suppose that the beam is well col-

limated, kwO >1. Under these conditions and the paraxial

approximation, (13) can be replaced by

EY(x, z)=~m exp[–(x’–xO)2/2w~] GO(x, x’; z)dx’.
—w

(29)

We wish to evaluate (29) for arbitrary (not necessarily

rational) values of z/z,,.

To do this it is convenient to express GOin terms of the

Jacobian theta-function ila, defined by Whittaker and Wat-

son [26] as

og(zl~)= ~ exp(nz2ni~-t2miz) (30)
~.—~

(the argument z is conventionally used in this connection

and should not be confused with the Cartesian coordinate

z used earlier). This function has a wealth of useful proper-

ties which we summarize in Appendix B. The theta-function

appears in solutions of other parabolic equations, such as

the heat equation [27]. In the paraxial parabolic equation,

however, the arguments z and ~ are both real (see below)

and 1$3must be treated as a generalized function.

Using (30), GObecomes

GO(x, x’; z)=~exp(–ikz)

{( 7r(x-x’) 2Z

1)(

7r(x+x’) 22
.63 Za ~–83T— —

211I )} (31)

From (29), then

Ey(x, z)= ‘xp\j’kz)J~mexp[-(x’-x0)2/2wi]

[(.193
77(X-X’) I 2Z

1)(

7T(X+X’) 22

‘ 2a
–83 Za - —I )1dx’. (32)

Zll ‘Z1l

With the help of (B. 11) we obtain

Ey(x>z)=:@xP(-@

{(

~(x–xf’) 2Z
. i+ Za -J-%

)

(

%’(x+xo) 2.Z. “
–+3 Za

)1
--E@ .

2a2
(33)

‘Z1l

Note that (33) differs from the paraxiall Green’s function

Go(x, x’; z) in (31) only in that the source point (x’, O) has

been changed to the complex location (xo, – ikwj’), and in

the presence of a normalizing factor wo~exp( – k2 w;).

The beam field in (33) is thus the equivalent of the field of

a source at a complex position, as has been noted previ-

OUS@[6], [28], [29].

Let us first consider the focusing relative to z, ~. Let

Z=qzll +Az, where —Zll/2GAZGZ11/2 and q is an in-

teger. From (B.3) and (B.8), we have

~y(x,z)=&exp(–~kz)

“{exp[–(x–xo)2/2~ 2(Az)]

. i)3 (ia(x–xo) 2ia2——
f2(Az) nf2(Az) )

–exp[–(x+xo)2/2 f2(Az)]

(ia(x+xo) 2ia 2

“ 83 f2(Az) nf2(Az) i}

(34)
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““211 z’”zil+Qz

Fig. 4. Overlapping of original and image beams in overmoded wave-
guide.

where we have defined a “complex waist parameter” ~(Az )

as

[ %4~2(Az)=w/ 1–z

=w~ –iAz/k.

Using (B. 12), we can further reduce (34)

E=(X> Y)= ~(~z)—exp(–ikz) ~
m—w

(35)

to

.{eXp[-(X-XO+2nZa)2/2~ 2(AZ)]

–exp[–(x+xO +2ma)2/2~2(Az)]}.

(36)

Now

1 1+ iAz /kw~

2f2(Az) = 2W2(AZ) 2W2(AZ)
(37)

where the waist size W(A z ) is given by

w2(Az)=w: +( Az/kwO)2 (38)

so we can see that (36) represents an infinite series of

Gaussian beams, each broadened from its focal plane

z= qzl, as if it were propagating in free space. We illustrate

this in Fig. 4. As Az increases, more and more of the

“image” beams contribute significantly to the field in O< x
<a. At AZ =Zl, /2 (say), the waist size has become

w2(z11/2)=w~ +(2a2/7rwO)2

=4a4/7r2w~ >a’

because our assumptions about the beam imply a>> Wo.

Thus we may require quite a few terms of the image series

(36) in order to compute the fields at certain values of z.

For such values of Az, we seek to improve the efficiency

of our scheme by transforming (33) in a somewhat differ-

ent manner. Applying relation (B.9), we find that

{
EY(x, z)=~ ~ exp(–ikz)

p–1

. ~ exp(*ir2z/z,, -v2r2w~/2a2)
~=()

/
. exp[inr(x–xo)/a]

([7T(X-XO) + 21Ti”z #r2w;
.83p 2a— —

Zll 2a2 1
77 w;

p2~+ip2—
2a2 )

–exp [iwr(x–xo)/a]

([

T(x+xo) + 27rrz T’w;
.83 p Za — +ir—

‘ZII 2a2 1
(39)

for any specified positive integer p. Now, let z =zp~ + AZP,

where now – z,, /2p< AZP <z, ~/2p. The periodicity prop-

erties (B.3) and (B.4) allow us to replace z by AZP in the

arguments of the theta-functions in (39). Subsequently. .
applying (B.8) results in

p–1

“(’’Z)=*

exp ( – ikz ) > exp (2nir2q/p )
~=o

“[ (ia(x–xo) 7rr
exp[–(x–xo )2/2 f2(AzP)]t93

pf2(Ap) p

2ia2

)

–exp[–(x+xo )2/2 f2(AzP)]
mp2f2(AzP)

. I?3(ia(x+xo) ~r 2ia2

)1

(40)
Pf2(A’p) – T np2f2(Azp)

where f is defined in (35) as before. For p = 1, this reduces

to (34) as expected. Finally, through the use of (B. 12) we

obtain

p–1

EJX, Z)= ~—exp(–ikz)* ~. exp(29rir2q/p)
f( Zp) r—

{
. ~ exp(-2*imr/p)

~.—~

[exp[-(x-xo+2ma/p) 2/2f2(AzP)]

-exP[-(x+xo+2ma/p)2/2f 2( A~p)]]}( 41)

Clearly, equation (41) represents a string of Fresnel images
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Fig. 5. Evaluation of power distribution of Gaussian beam over 1/8 cycle: ka = 973.39; kwo = 110.3. (a) z/zl, = O,

(b) 3/512, (c) 8/512, (d) 13/512, (e) 16/512, (f) 22/512, (g) 28/512, (h) 32/512, (i) 55/512, (j) 64/512.

at zP~, broadened by their additional propagation distance

Azp as evidenced by the factor ~(AzP) (compare (26)-(27)).

A slight rearrangement of (41) yields a single summation

(letting m+ n)

q(x, z)=~exp(-k)

‘n=~mc.(P,~)(exp[-(x-xo-2~~/p)2/2f2(Azp)]
–exp[–(x+xO –2na/p)2/2~2(AzP)]] (42)

where c.( p, q) is given by (27).

How, then, is p to be chosen? Our goal is to minimize the

number of terms of the series (42) required to give a

specified accuracy. The series (42) should be taken from
~ = —N to N+ 1, with N chosen so as to have a relative

error term less than a given magnitude, say 10 – 5. This

criterion can be specified a priori as

N= [3pw(AzP)/a] + 1 (43)

where the square brackets denote the greatest integer less

than or equal to the enclosed quantity, and W(. ) is the

function given in (38). This criterion can be obtained by

estimating the magnitudes of the successive terms in (42).

Now, as ZPvaries from O to ~zl ~/2p = *zPl /2, (43) varies

from 3pw0 /a + 1 to

HJ1+T7°
If p <a/2w0, then N may vary between 1 and a maximum

of about 6a/m Wo, as AZP varies on the interval [ —ZPI/2,

+ ZPI/2]. On the other hand, if p >2a2/m w:, N varies from

a minimum of at least 4a/r w. to a maximum of at least

6@a/nw0. Such large values of p are thus clearly unde-

sirable for efficient field computations (because more

images of the Gaussian beam are fitted inside the wave-

guide than can be accommodated without severe overlap).

Although small values of p may give very small values of

AZP for certain values of z, a single choice of p for all z

IEY12A

- EXACT
---- APPROX.

10 —

09 —

08 —

0.7 —

06 —

0,5 —

04 —

0.3 —

02 –

01 —

I k I I *
o 0.1 02 03 04 0,5 06 0,7 08 09 I.O x/O

Fig. 6. Exact and approximate power patterns at large axial distance;

ka= 1538.23; kwo = 174.3; Z/Z,* =250.1 19.

results in a simpler computer program, Thus the choice of

p=[a/wO]+l

appears to us to be nearly optimal. ~

V. NUMERICAL RESUILTS

Numerical results for Osz <zg, were computed for a

symmetrical Gaussian beam

EY(x, O) =exp[ – (x–a/2)2/2w~]

for a waveguide with ka = 973.4, kwo = 110.3. Computa-

tions were made using both an exact mlode series (cf. (14))

and the hybrid-image representation (42). The two meth-

ods gave graphically indistinguishable. results over this

range, which are displayed in Fig. 5. Note that 5 or 6 is the

maximum distinguishable number of beams in this case,

and is a suitable choice for p.

Fig. 6 shows that for very large values of z, the accuracy

of the paraxial approximation has begun to deteriorate



930 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Nm_r-29, NO. 9, SEPTEMBER 1981

slightly. In a future paper, we will examine how to obtain

closed-form expressions for this correction, but meanwhile

we note that even for z = 250z I,, the accuracy of the

paraxial expression is quite good. If we take this example

to model an optical waveguide with a= 100 pm, WO= 707

pm, the distance 250z1, represents about a 50-m length of

waveguide which of course is a huge number of wave-

lengths. We thus see that the paraxial approximation is

capable of excellent accuracy over modest lengths of wave-

guide, even at optical frequencies.

VI. CONCLUSION

We have described a hybrid technique for computing the

fields of a paraxial beam propagating in a multimode

waveguide for very long distances. The method relies on

the periodic Fourier and Fresnel imaging properties of the

guide, and is highly efficient for beams of moderate width

compared to either full modal or ray approaches. Numeri-

cal comparisons have confirmed the accuracy of this

method.

This approach should be susceptible to generalizations in

several directions, For a beam with oblique incidence (as in

[6]), the parabolic approximation of Section II can be

modified when the dominant propagation factor in the

z-direction is other than exp( – ikz) as indicated in [12].

Higher order corrections to the paraxial solution for a

dielectric slab similar to those for the metallic guide given

in Section II can also be obtained. Slowly varying guide

widths and inhomogeneous refractive index profiles should

also be tractable by similar methods. Investigations into

these areas are currently being made, as is the generaliza-

tion to waveguides of circular symmetry.

APPENDIX A

THE PARAXIAL APPROXIMATION FOR A DIELECTRIC

SLAB

Consider the step-index dielectric slab waveguide shown

in Fig. 7. The slab has thickness b and refractive index n ~.
The cladding index is n,, and both media are assumed to

be nonmagnetic. The TE modes for this waveguide have

the field distribution [1]

I
exp(–ikaz)z lexp[k~z]sino(a), ~<o

exp(–ikaz)z lsin[k~~x++(a)], ()<x<b
EY =

exp(–ikaz)A sin[k/~b+@(a)]

(Al)

where A is an arbitrary constant amplitude. Here k is the

wavenumber of free space, ka is the propagation constant

of the mode, and @(a) is the phase shift associated with the

Goos–Hanchen effect:

@(a)= sin-l[kb(~\V] (A.2)

where V is the so-called normalized frequency:

V=kb{n~–n~. (A.3)

+------
bl nO

x=() 1 *
nl z

~=()

Fig. 7. Dielectric slab waveguide.

Note that V>> 1 for a highly multimode guide.

The characteristic equation which determines the eigen-

values a is obtained by requiring HZ to be continuous at
~=b:

sin[k/~b+2@(a)] =0. (A.4)

The paraxial approximation to these modes (a ~ no) is

found as in [10] by reckoning ~(a) to be small. From (A.2)

and (A.4), we then obtain approximately

sin[k~~b(l+2/V)]=o

or

/

~2v2

am =

‘;– k2b2(l+2/V)2
(A.5)

i.e., the propagation constants for a parallel-plate wave-

guide of slightly larger width a= b(l + 2/ V). The corre-

sponding field within the slab is, from (A. 1),

exp(–ika~z)A sin[k{~(x+b\V)], O~x~b.

(A.6)

Here we have

~2n2

[

~4r4

am=no — +0
2nOk2b2(l+2/V)2 k2b2V3(l+2/V)5

I

I ~4T4

.0

1
k4b4(l+2\V)4 “

(A.7)

For most optical waveguides the first error term is likely to

be the larger, but in any case we require

k2b2V3 >1 and k4b4>>l.

APPENDIX B

PROPERTIESOF CJ p, q) and 83(z17)

In this Appendix, we derive a number of useful proper-

ties of the Gaussian sums c.( p, q) defined by (27), and the

theta-function il~(zl~), defined by

i33(Z]T)= ~ exp(rn2mi,+2miz) (B.1)
~.—~

where, for our purposes, z is an arbitrary complex number,

while ~ lies in the upper half-plane Im( ~) >0. If ~ lies on

the real axis, we likewise require that z be real, and in this

case 03( z I~) must be treated as a generalized function.

From Whittaker and Watson [26], we can obtain a
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number of periodicity and parity relations:

193(z[7)=03(-zl T) (B.2)

03(z]T+2n )=193 (zl T) (B.3)

lY3(z+rZn’1 T)=l$3(z17), n=(), *l, t2, . . .

(B.4)

i.l~(z+nn~l~)=exp( -nirz2~-2inz)0~ (zlr). (B.5)

All four relations are easy consequences of the definition

(B.1). It is also interesting to note that IYq satisfies the

parabolic equation

vi ~21Y~(Z17)+i3@3=o

7 az2 ar
(B.6)

which is obtained from the Helmholtz equation in the

paraxial approximation, and is similarly easily verified (cf.

(8)).

For real z, OS at ~= O (as a generalized function) can be

evaluated as [24], [30]:

Oq(zlO)= ~ exp(2rniz)=r ~ 8(z–n~).
~.—~ ~z—~

(B.7)

Another useful relation, which holds for general z and ~,

is obtained from Jacobi’s imaginay transformation [26]:

~~(zl~)=~-112exp( im-/4+z2/ni~)0~ (z/~l- l/~).

(B.8)

This relation can be verified using the Poisson summation

formula [24].

The identities which form the basis for the “image-

splitting” properties of the theta-function can be deduced

from a more general expression given by Krazer [31] (see

also [32]). These relations, which might be referred to as

modular relations, are

p–1

IY3(z17)= ~ exp(nir2~+2irz) Oq(p[z+nr~]lp2~)
~=()

(B.9)

(B.1O)

Equation (B.9) is verified by writing m =pl+ r, r=

0,1,. . . ,(p– 1) in (B.1~ (B.1O) follows by substituting (B.1)

into the right-hand side. Actually (B.9) and (B. 10) can also

be derived from each other using (B.8) as well.

An integral which the authors could not find in the

literature is given in the following:

J* exp( –ax2+bx)03(xl~)dx
—w

(B.11)

The derivation is straightforward, proceeding by in-

tegrating (B. 1) term-by-term.
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Finally, we note that

8q(izli~)=exp(z2/n~) $j exp[–(z+mm)2/m]
~.—~

(B.12)

i.e., I$s can be related to a string of displaced Gaussian

functions.

The Gaussian sums c.( p, q) depend on the prime fac-

torization of the integers p and q. The properties of these

sums can be derived by following methods outlined in [25]

or [33] for the special case of CO(p, q ). Here, we will only

present the results, and refer the interested reader to [25]

and [33] for the methods of proof (see also [34], [35], and

[38]).

In order to describe the properties of c.( p, q), we

use the following notations from number theory [25]:

klm: k divides m (without remainder);

kjm: k does not divide m;

(k, m): greatest common factor of k and m;

a~b(modm): ml(a–b);

will

(klm): Legendre’s symbol defined for odd primes

m;

[

+1, if t2 - k(mod m ) for some integer t

(klm)= and kZO(mod m)

– 1, if t2= k(mod m ) for any integer t

(O1m)=O.

The following properties are elementary:

%( P>9+P)=%(P>9) (B.13)

%+p(P, q)=%(P, q) (B.14)

Cn(l, q)=l (B.15)

{

1, pin
Cn(P,o)=

o, p+n .
(B.16)

Reciprocity law (for q odd):

cn(P?9)=m’’2exP( ~i/4–~in2/2P9)

~[l+exp(-~@q/2-nin) ]c~(q, p) (B.17)

where * denotes complex conjugate. In particular, from

(B. 15) and (B. 17) there follows

exp(ni/4–~in2/2p)
%( P,l)=

G
[1 +exp(-7rip/2-nin )].

(B.18)

We need only consider the case when ( p, q) = 1, because

of

{3%/k(P>q)2 ~1~
c~(kp, kq)= o

k+n.
(B.19)

Also, we need only consider the case when p is odd or a

power of 2, because if (PI, P2) = 1

cn(Pl P2~q)=cn(Pl ~@2)cn(Ju2~qPl)” (B.20)

These cases can be reduced to the case n= O, since if p is
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odd and (p, q)= 1, then

cn(~j4)=exp(2~~~290/~)co(~,~) (B.21)

where q. is the solution (unique mod p ) of

4qqo=–l(modp).

Ifp=2a and (p, q)=l, then

cn(2”, q)=

‘ l–exp(–rin)
~=1

2-”/2 [~+exp[~i(q+rz]/2]]

“(

l+exp(–nin)

2 )

.exp[–2rin2(2-”-2 +po)/q],

~=2,4,6, . . .

2-1”-’J/2exp(~~q/4) ( 1 ‘exp~-n’n) )

1.exp[–2nin2(2-a-2 +po)/q],

a=3,5,7 . . .>

(B.22)

where pO is the solution (unique mod q) of

2“+2po-–l(modq).

Further factoring of odd p using (B.20) results in Co(p“, q),

where p is an odd prime and (q, p)= 1. In this case

rx=l,3,5 . . . .9 (B.23)

From the foregoing properties we can deduce that if (p, q)

=1

[cn(p, q)~-””z (B.24)

if p is odd, and

{
l%(P, q)l= 2-(a-1)2fi-l/2 (B.25)

alternately in n if p =J2a with p odd and a> 1. We can

conclude from this that the power in the original image is

equally divided among all Fourier or Fresnel images which

have a nonvanishing amplitude.
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Asymptotic Eigenequations and Analytic
Formulas for the Dispersion Characteristics

of Open Wide Microstrip Lines

WENG CHO CHEW, MEMBER, IEEE, AND JIN AU KONG, SENIOR MEMBER, IEEE

Abstract — Thrmmh the matched awm~totic exoansiorls techrriwe,

asymptotic eigenequations for the even and odd modes of :an open wide

microstrip transmission line are ‘derived. The eigenseqmrtiorrs, and skrrplifi-

cations thereof which do not involve integration, can be solved easily for

the effective pcrmittivity. Even though d/W is assumed to be smafl, the

solutions are good even if d/W= 0.8 when compared with t-he numerical

results of Jansen [19]. From these eigenequations, asymptotic formulas for
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the effective permittivity can be derived which are excellent when d/ W’CX

0.2. When the frequency goes to zero, we reproduced the asymptotic

formula derived under the quasi-TEM approximation in [8]. The asymp-

totic anafysis provides good physical insight into the problem, otherwise

unavailable from mrmericaf analysis.

1. INTRODUCTION

E

VER SINCE the introduction of microstrip transmis-

sion lines, the field of microwave engineering has

been inundated with papers on the calculation of the

characteristic impedance and effective permittivit y of a

microstrip transmission line. Due to the increasing use of

mkrostrip lines in the high-frequency regime, numerous

papers on the study of the dispersion characteristics and
higher order modes of the line have been published. Excel-
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