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A Hybrid Method for Paraxial Beam
Propagation in Multimode Optlcal
Waveguldes

DAVID C. CHANG, SENIOR MEMBER, IEEE, AND EDWARD F. KUESTER, MEMBER, 1IEEE

Abstract— A hybrid (nonray, noninodal) method for computing the fields
of a paraxial beam propagating in a multimode waveguide (parallel-plate or
dielectric slab) at large axial distances is presented. The method is based
on the Fourier and Fresnel self-imaging properties of these waveguides,
and is capable of high accuracy. The method is much more efficient than
ray or mode approaches, while giving complete field information which
coupled-power equations do not provide.

I. INTRODUCTION

ULTIMODE optical fibers appear at present to be

the most common optical waveguiding medium for
applications in the immediate future. Incoherent sources
and relatively simple detectors can be used, and the toler-
ance problems encountered with single-mode fibers are far
less severe with such waveguides.

At present, there are essentially three methods available
for field computation in multimode waveguides. First, one
can take a pure modal approach— the excitation amplitude
of each mode is computed, and all modes are summed
together. Although in principle exact, this approach suffers
not only from the large number of modes which must be
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kept track of (100~ 1000 for a typical fiber; 30~ 100 for a
slab geometry) but also from a large degree of cancellation
of terms in the mode sum when the field does not match
that of an individual mode. Examples of the application of
this method may be found in [1]. Although in some special
cases approximate closed-form results are available, a com-
puter analysis is generally required, and roundoff errors
can be expected to accumulate, especially for large propa-
gation distances.

‘A second approach is that of geometrical optics (some-
times encountered as the WKB method). An excellent
discussion of this approach has been given by Gloge and
Marcatili [2] (see also [3]). Here one approximates the
effect of a-large number of discrete propagating modes by
a continuously distributed propagation constant belonging
to a “continuous spectrum” of modes. These, when com-
puted under the WKB approximation, can be interpreted
as a cone of rays lying within some characteristic accep-
tance angle of the fiber. The propagation problem then
reduces to that of defermining the amplitude with which
each ray is excited, and tracing it down the length of the
guide. Intuitively more suitable for multimode guides be-
cause of the “high-frequency” nature of the problem, this
approach is nonetheless approximate by virtue of the geo-
metncal optlcs techmque Moreover in a situation where
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paraxial propagation conditions exist (see the following), a
large number of rays can be expected to contribute at large
propagation distances (hundreds of meters or several
kilometers may not be uncommon). In this region, the
“geometrical optics approach can be seen to suffer from
similar disadvantages as does the first.

A third approach (see, e.g., [4], [5], [39]) is a purely
numerical one, wherein the partial differential equation—
Helmholtz or its parabolic approximant—is tackled di-
rectly, without the use of either mode or ray concepts. In
[4] and [5], the equation is discretized and solved with the
aid of fast Fourier transform techniques. This method, like
the first, is also capable of arbitrary accuracy in principle,
and requires neither a detailed knowledge of a large num-
ber of modes, nor the tracing of a large number of ray
paths. Again, however, when very long propagation dis-
tances are being studied, the discretization of the wave
equation in the longitudinal direction can lead to large
error accumulations which do not seem easily avoidable by
this technique.

Finally, we might also mention here the coupled-power
equations approach [1]. This method seeks only to find the
total power carried by each mode, since for many applica-
tions the details of the field distribution from each mode
are not of interest. One then takes a statistical approach to
these equations, and obtains useful results for pulse disper-
sion when each mode of the guide is detectable only
through its total power. There are many other applications,
however, when the fields themselves are important, such as
in the design of couplers, splitters, switches, splicers, etc.,
and it is this problem in which we are interested here.

The method we propose is based on the imaging proper-
ties of multimode waveguides. In the paraxial approxima-
tion, a parallel-plate or dielectric slab waveguide will
periodically reconstruct the field pattern at the input plane
(and, at more frequent intervals, a string of such replicas).
Because of this, we need only perform our field computa-
tions within the space of one of these periods, and will not
suffer the loss of accuracy at large distances associated
with the methods described above. Our computations will
be performed for a parallel-plate waveguide with perfectly
conducting walls, but the results are immediately applica-
ble to the dielectric-slab waveguide (Appendix A). The
method will allow a simple formula to be obtained for the
propagation of a Gaussian beam of substantially narrower
width than that of the guide. (Note that the study by
Felsen and Shin [6] of beam propagation in waveguides is,
in practice, restricted to beams which propagate obliquely
to the axis of the guide, and actually will suffer from the
same drawbacks at large axial distances as does the ray
method, although it is probably superior to the ray method
at shorter distances). Numerical comparisons with exact
(modal) calculations are quite favorable, even for rather
large propagation distances.

II. THE PARAXIAL APPROXIMATION

To fix ideas, let us consider the parallel-plate waveguide
illustrated in Fig. 1 (the discussion of this section, however,
is quite general and need not be restricted to this specific
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Parallel-plate waveguide.

waveguide). The walls at x=0 and x=a are perfectly
conducting, and some known source produces a given
excitation or input field at the plane z=0. For simplicity,
we restrict ourselves to two-dimensional TE fields, so that
the entire field H=a, H, +a,H,, E=a E, wherea,, a,, a,
are Cartesian unit vectors, can be derived from the scalar
function E, which satisfies
2 2
(a—+—@—+k2) =0 (1)
ox?  9z2
for z>0. Here k=w/fi€, where a time dependence exp(iw?)
has been assumed, and g, € are the electrical parameters of
the medium filling the waveguide.
In the paraxial approximation, we write

E,(x,z)=exp "**A(x,z) (2)
and assume that most propagation takes place nearly in the
z-direction; that is, A(x, z) as a function of z varies slowly
compared to exp(—ikz). Inserting (2) into (1) we obtain
3? R )
— —2ik+—+— |A(x,z)=0 3
(Z-aig+ S a0 @

and in the paraxial approximation, we neglect the 92/9z2
term compared to the first derivative term because of the
slow variation of A(x,z) in z assumed above. We thus
obtain the following parabolic equation for A(x, z) [7]:

92 d
(F—zlk— )A(X Z) 0. (4)

To put this approximation on a more quantitative foot-
ing, we can apply some ideas from the boundary-layer
technique [8]. By “stretching” the variable x into a new
variable v =x/a, we can deal with a transverse variable »
which is 0(1) over the entire cross section of the guide.
When rewritten in terms of », equation (4) becomes

(8872—2zka 9 )A(V 2)=0 (5)

which suggests that the scaling {=const z/ka® might be
convenient. For reasons which will become clear in the
next section, we choose { =nz/4ka’. Making both changes
of variable in (3), we have

—Ei— _ 77'2 a2A(V,§)
(au2 )A(”’g)_ ot o ©

It is natural now to assume a solution to (6) of the form

AW, §)~Ao(r. )+ 55 Ay(v, $)+ -

mi 0
2 a¢

22 (7, §)+
(7)
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so that, by matching powers of (ka) 2, we find a recurrent
set of equations for 4, 4,, etc.:

ad ]
(ﬁ—%a—g)/io(”,f)zo (8)
3 X 29%4(v,¢)
('a—;i'—z;—’l'a—g,)Al(V,g):_%_'%EE“_ (9)

and so on. As initial conditions at {=0, we require
Ay(x/a,0)=E (x,0)—a given function— while 4,(»,0)=
Ay(v,0)=---=0.

We are now in a position to estimate the magnitude of
the correction term A4;, and therefore the error involved in
the paraxial approximation. It is easily verified that, for
example,

g 3%,(r,5)

AI(V’g): 2,”. 81/4
—_ l7T§ 82A0(V’§)
S (10)

with 4,, 4,4, etc., given by similar expressions. Because of
the scaling of the variables » and ¢, the differentiations in
(10) do not increase the order of magnitude of the function
Ay. Thus if A is 0(1), then

|4:(7,$)1<0(8) (11)

so a criterion for the accuracy of the paraxial approxima-
tion (4=>~4,) is that { /k%a? <1, or in other words

kz>(ka)*. (12)

In addition, of course, we also have the condition k%a? > 1,
which is implicit in the expansion (7) and the fact that the
guide is highly multimode.

These arguments are not restricted to the case of a
parallel-plate waveguide. However, as with any “order-of-
magnitude” arguments, they say nothing about the propor-
tionality constant implicit in (11). In fact, this constant will
depend sensitively on the function 4y(», {), mostly through
its initial value Ay(»,0). Thus, a detailed study of the
estimate (11) should be made when using the paraxial
approximation in any specific situation. This procedure is
discussed in some detail by Tappert [9], who also gives a
large number of references to its use in acoustics. In
Appendix A, we consider the paraxial approximation for a
dielectric slab waveguide, and demonstrate an approximate
equivalence with a parallel-plate waveguide.

In closing, we might also note that Polyanskii [11] has
obtained a formula relating the solution of the parabolic
equation to that of the Helmholtz equation which is an
alternative to the perturbation series (7). This same ques-
tion is addressed from a rather different viewpoint in [36].
Further, another variant of the parabolic equation more
suitable for off-axis propagation has been proposed in [12].

II. GREEN’S FUNCTION AND IMAGING

By well-known techniques, the field E (x, z) for z>0 in
the waveguide can be expressed in terms of the field
E(x,0) at an input plane (z=0) by means of a Green’s
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function G(x, x’; z):

Ey(x,z):anEy(x’,O)G-(x,x’;z)dx" (13)

where G can be expressed as a modal expansion:

2 max’
G(x,x’; z)=; >
—

a

mwx

sin sin exp(—iB,z),

1
z=0 (14)

where B, =(k*—m?r*/a*)"/%. On the other hand, the
Green’s function G, for the paraxial approximation (2), (4)
to E, is given by
,on 2 . < . mux
Go(x,x';2)= —exp (—ikz) sin—-=
1

m=

. max’
-sin
a

exp (izm?n2/2ka®). (15)
Evidently G, could have been obtained from G by replac-
ing B, by the first two terms of its binomial expansion
B, ~k—m?n*/2ka®. We see that whereas G has a large
but finite number of modes which propagate, the paraxial
approximation G, has infinitely many such modes. It is
convenient to rewrite G, by expressing the sine functions as
exponentials; the result is

1 T
Go(x,x’;z)zzexp(—ikz) > exp(izm®n?/2ka?)

{exp[—imn(x—x")/a] —exp[—imu(x+x')/a]}.
(16)

If we define
z), =4ka®/7 (17)

(so that the stretched variable of the previous section is
${=z/z;)), then

[e o}
Go(x,x";2)= ila—exp(—ikz) S exp(27im®z/z,,)

- {exp[—imw(x—x")/a] —e);p [~ima(x+x")/a]}.

(18)

Equation (18) is the basis for the so-called Fourier- and

Fresnel-imaging properties of this waveguide [13]. It is

easily seen from (18) that exp(ikz)G, is a periodic function
of z:

Go(x,x"; z2+21))=Gy(x, x"; z)exp(—ikzy, ). (19)

In particular, since (13) implies that G(x, x”; 0) is equal to
3(x—x") for 0<(x, x")<a, we have

(20)
for any integer #, i.e., the input plane field is replicated at
each of the Fourier image planes z=nz,;;. This phenome-
non was first investigated theoretically for unbounded peri-
odic gratings, and the imaging distance was first given by
Rayleigh {14]. Later treatments have been given in [13],
[15]-[17]. Because of the mathematical equivalence of a
waveguide with a periodic system, this imaging also occurs
in waveguides—a fact apparently first noticed by Rivlin

Go(x,x"; nzy;)=8(x—x")exp (—iknz;,)
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and Shul’dyaev [18] and discussed at length by a number of
authors [10], [19]-[23], [37].

An even more interesting occurrence shows up at z=z,,,
where

q
z,, ==z 21
rq p 11 ( )

and p and g are some positive integers, Let us consider the

sum
o]

Q,(x)= X exp(—imﬂx/a—|-277imzzpq/z”).

m=-—00

(22)

Let m=pi+r, where r runs from 0 to p—1, and express
(22) as a double sum
p—1

0,,(x)= § Y exp{—imx(pl+r)/a

I=—o00 r=0

+277iq[p122lr+r2/p] }

p—1
= X exp{—inrx/a+2miqgr’/p}
r=0
> exp[—implx/al|. (23)
[=—00

However, the summation in parenthesis is nothing more
than Q,,( px), although now the argument can range not
Jjust from —a to +a (or 0 to 2a), but from —pa to +pa
(or 0 to 2 pa). Making use of the formula [24]

5‘1 exp (2mimx/d )=d _2 8(x—nd) (24)

for any positive d

p—1
0,,(x)= % 2 exp(—imrx/a+2migri/p)
r=0

From (18), then, we have
[eo]

Golx,x's 2,5) =exp (—ikz,g) 3 (p4)

-[8(x—x’— % ’)1:——3?)6“'— % )] (26)

where the coefficients ¢, are given by

rp—1

go exp (2mir(rq+n)/p).

¢(p.q)=~ (27)
) p

These coefficients are known as Gaussian sums, and play a

key role in analytic number theory [25]. Their most im-

portant properties are summarized in Appendix B.

For p=1, only one of the delta-functions 8(x—x’) is
nonzero in the range 0<(x, x")<g, and we recover the
single Fourier image described before. If p>1 on the other
hand, more of the delta-functions in (26) may appear in
this range. Each one contributes to (13) a replica of the
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Fig. 2. Imaging of a nonsymmetrical field distribution. (a) Input func-
tion E,(x,0). (b) E (x.z3))=E,(a—x,0) (inverted image). (c) The
three components of E,(x, Z3,)

i
Ey(x,z3)= _3Ey(x’0)

+exp(—m/6) ~E,(2a/3—x,0), 0<x=<2a/3
Ve E,(x—2a/3,0), 2a/3<x<a

exp(—im/6) | E(x+2a/3,0),
* ‘/§ —E,(4a/3—x,0),

(d) The two components of E(x,241)

E(x,24)= [exp(m/4)Ey(x,O)+exp(3m/4)Ey(a—x,0)]/\/5.

0<x=gq/3 }

a/3<x<q

input field which is shifted by some amount in the x-
direction, and whose amplitude is |c,(p, q)| times that of
the original image. Any terms arising from the terms
8(x+x"—2na/p) are inverted as well. Images of this type
have been called Fresnel images.

For an input function not symmetric with respect to the
center of the guide x=a/2, we have depicted the various
images along with their (complex) amplitudes in Fig. 2 for
2,1, Z31, and z,,. The phase factor exp(—ikz) is omitted in
this figure. Fig. 2(a) illustrates the input function E(x,0).
At z=z,,, there is only one image, which is inverted with
respect to the original, but is also a further 180° out of
phase with respect to the input after the factor exp(—ikz)
is accounted for (Fig. 2(b)). At z=z,, (Fig. 2(c)), the
situation is more involved. One of the images is an un-
changed replica, reduced in amplitude by 1/y3 and phase
shifted by 90°. The other two image terms have “broken
up” and rearranged the original pattern. Between then,
they both contain two complete replicas of the original,
and again the amplitude of each is reduced by 1,/y3. Note
that this amplitude reduction is consistent with the fact
that all of the power of the original pattern must be
divided between the three split images. At z=z,,, there is
both an erect and an inverted image (Fig. 2(d)).

For the special case of a symmetric excitation, E(x0)=
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Fig. 3. Imaging of a symmetric field distribution. (2) |E,(x,0)|=
VE (%, 220l =| E)(x, 241)| =| E,(x, 2g)|- (b) The three components of
Ey(xfz?:l)'

E(a—x,0), z;), z4, and indeed zg all reproduce the
original input function (Fig. 3(a)). If the input function is a
beam of sufficiently narrow width, we can recognize three
essentially distinct images at z,, (Fig. 3(b)). At other image
planes, similar conclusions hold.

The Fourier and Fresnel images allow us, in principle, to
compute the field in the waveguide at any point, z,, (and
any arbitrary value of z can be approached as nearly as
desired by such a point). This procedure could, however,
require a large value of p, and hence an inordinately large
number of image terms, resulting in a method which is no
more efficient than the modal approach. In the next sec-
tion, we will show how, for a certain specific type of
excitation, efficient field computation can be carried out
for any value of z, using only a relatively small number of
images.

Let us emphasize in closing this section that the imaging
phenomenon results from the collective interference of the
mode sum (14), or alternatively from the interference of the
series of “rays” (plane waves) represented by (18), depend-
ing on one’s preferred physical picture. The only assump-
tion involved is the paraxial approximation, and in the case
of the parallel-plate waveguide, no approximation of the
mode functions themselves is needed. In the case of a
dielectric waveguide, some small higher order corrections
to the mode functions will be needed (see Appendix A).

IV. PROPAGATION OF A GAUSSIAN BEAM
Consider the initial field distribution

2

E},(x,O):exp [—— (x—xg) /2w02] (28)
i.e., a Gaussian beam centered at x, with waist parameter
w,- Let 0<x,<a, and assume that the “tails” of the beam
are negligible at the walls of the guide:

WO <<x0 WO <<a—x0.

In addition, we also suppose that the beam is well col-
limated, kw, > 1. Under these conditions and the paraxial
approximation, (13) can be replaced by

E/(x,z)= /_wooexp [— (x"—x, )2/2w02] Go(x,x';z)dx’.
4 (29)

We wish to evaluate (29) for arbitrary (not necessarily
rational) values of z/z ;.

To do this it is convenient to express G in terms of the
Jacobian theta-function ¢, defined by Whittaker and Wat-
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son [26] as

dy(z|7)=

[oe]

2

(30)

(the argument z is conventionally used in this connection
and should not be confused with the Cartesian coordinate
z used earlier). This function has a wealth of useful proper-
ties which we summarize in Appendix B. The theta-function
appears in solutions of other parabolic equations, such as
the heat equation [27]. In the paraxial parabolic equation,
however, the arguments z and 7 are both real (see below)
and 4, must be treated as a generalized function.
Using (30), G, becomes

exp (m*miT+2miz)

Go(x,x';z)= %exp(——ikz)
7(x—x’)

o[22

2a
From (29), then

2z
Zn

2z
211

)} (1)
E/(x,z)= ex_p(z—_}l_cz_) f:oexp [— (x"—x, )2/2w02]
7(x—x’)

[ol

With the help of (B.11) we obtain
=M /7 —;
E(x,z)= p \/;exp( ikz)

r 1 )]dxa (32)

2z
n

s m(x—xo) |2z  imwg
} 2a zZy 24’
7(x+x,) 2z imwg

/ ﬂ3( o o F 2 [ (33)

Note that (33) differs from the paraxial Green’s function
Go(x, x"; z) in (31) only in that the source point (x’,0) has
been changed to the complex location (x,, —ikw?), and in
the presence of a normalizing factor wy/27 exp(—k2w?).
The beam field in (33) is thus the equivalent of the field of
a source at a complex position, as has been noted previ-
ously [6], [28], [29].

Let us first consider the focusing relative to z;,. Let
z=gqz,,tAz, where —z,,/2<Az<z,,/2 and ¢ is an in-
teger. From (B.3) and (B.8), we have

Ey(x,z)Z%exp(—ikz)
-{exp[—(x—xof/sz(Az)]
. ia(x—xq)| 2ia?
"3( 77(32) |777(87) )

-exp[—-(x+x0)2/2f2(Az)]

2 }

ia(x+xy)
f*(Az)

2ia?

mf*(Az)

(34)
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Fig. 4. Overlappling of original and image beams in overmoded wave-
guide.

where we have defined a “complex waist parameter” f(Az)
as

2
f2<Az>=w02[1— 2
7wy 21
=wg —iAz/k. (35)

Using (B.12), we can further reduce (34) to

E(x,y)= %exp(—ikz) ?

. {exp[-—(x—xo+2ma)2/2f2(Az)]

—exp [— (x+x, +2ma)2/2f2(Az)] J.
(36)

Now
iz Jkwd
2w2(Az)

11
22(Az)  2w?(Az)

where the waist size w(Az) is given by

(37)

w2(Az)=wg+(Az/kw,) (33)

so we can see that (36) represents an infinite series of
Gaussian beams, each broadened from its focal plane
z=gqz,, as if it were propagating in free space. We illustrate
this in Fig. 4. As Az increases, more and more of the
“image” beams contribute significantly to the field in 0<x
<a. At Az=z,, /2 (say), the waist size has become

w(zy;/2)=w; (2‘12/WW0 )2

~4a*/m?w} >a?

because our assumptions about the beam imply a>w,.
Thus we may require quite a few terms of the image series
(36) in order to compute the fields at certain values of z.
For such values of Az, we seek to improve the efficiency
of our scheme by transforming (33) in a somewhat differ-
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ent manner. Applying relation (B.9), we find that

Y /T —i
Ey(x,z)— 2 V2 exp (—ikz)

p—1
- X exp(mir’z/zy, —wtr’wl/2a?)
r=0

. {exp [imr(x—x4)/d]

9, ( p[w(xz—axo) N

2arz
n

2,2
. TIW,
ir

2a?

2
z +ip ————zwz ) —exp [inr(x—x,)/a]
a

. Twg
ir

2a?

2z TWe
2= tipt—2 39
A S (39)
for any specified positive integer p. Now, let z=z,, +Az,,

where now —z,, /2p<Az, <z, /2 p. The periodicity prop-
erties (B.3) and (B.4) allow us to replace z by Az, in the
arguments of the theta-functions in (39). Subsequently
applying (B.8) results in

~1
- " L B )
E(x,z)= 2(82,) exp (—ikz) rgo exp (27ir’q/p)

ia(x—x) a@r

pf*(a,) P

ol-temar sl

ﬁj )_exp["(ﬁxo)z/zfz(mp)]
M ar|_ 2ia®
(pf (8z,) P |mpf(dz,) )} “

where f is defined in (35) as before. For p=1, this reduces
to (34) as expected. Finally, through the use of (B.12) we
obtain

p* 1
E(x,2)=

)exp(—zkz)— exp(2mir’q/p)

( r=0
{ exp(—2mimr/p)
[exp

—(x— x0+2ma/p) /2f (AZ )]

—exp[—(x+x0+2ma/p)2/2f2(Azp)”}. (41)

Clearly, equation (41) represents a string of Fresnel images



CHANG AND KUESTER: HYBRID METHOD FOR PARAXIAL BEAM PROPAGATION

929

rTTrrTTrT1TT T T T T T orrTT TTTT T TTT Ty TT T T TTTTTrTITT

X=O_l ) U I l‘. I R T | I_ I S T B ¥ l— L I T l_‘ b | T N I | l—

(a) (®) © @ ©
L > TTrTTTTrTT TTTTTr T T TT __I TTrTTTTrTT _l TTrTTTTT l_
L - - - iy - RS - - .
x=oo—| T I I_1 A1 |_:I O| [ T B | 1‘1 (I | |: 0—1 Ly ]

® (® G @ )

X
INTENSITY

Fig. 5. PBvaluation of power distribution of Gaussian beam over 1/8 cycle: ka=973.39; kw,=1103. (a) z/z;,=0,
(b) 3/512,(c) 8/512,(d) 13 /512, (e) 16 /512, () 22 /512, (g) 28 /512, (h) 32 /512, (i) 55/512 () 64/512.

at z__, broadened by their additional propagation distance
Az, as evidenced by the factor f(Az,) (compare (26)~(27)).
A slight rearrangement of (41) yields a single summation
(letting m—n)

E/(x,z)= exp(—ikz)

Yo
f(Azp)

:E_ eu(p,q){exp[—(x—x,—2na/p) /2f*(Az,)]
2]}

—exp[— (x+x,—2na/p)’/2f*(A
where c,( p, g) is given by (27).

How, then, is p to be chosen? Our goal is to minimize the
number of terms of the series (42) required to give a
specified accuracy. The series (42) should be taken from
n=—N to N+1, with N chosen so as to have a relative

error term less than a given magnitude, say 107>, This
criterion can be specified a priori as

:[3pw(Azp)/a]+1 (43)

where the square brackets denote the greatest integer less
than or equal to the enclosed quantity, and w(-) is the
function given in (38). This criterion can be obtained by
estimating the magnitudes of the successive terms in (42).

(42)

Now, as z,, varies from 0 to *z,, /2p=*z, /2, (43) varies
from 3pw, /a+1 to

6 a 772p2w6" 1/2

= =1+ .

T W 4q*

If p<a/2w,, then N may vary between 1 and a maximum
of about 6a/mw,, as Az, varies on the interval [~z,, /2,

Z,1/2]. On the other hand, if p>2a2/7rw0 , N varies from
a minimum of at least 4a/7w, to a maximum of at least
6v2 a/mw,. Such large values of p are thus clearly unde-
sirable for efficient field computations (because more
images of the Gaussian beam are fitted inside the wave-
guide than can be accommodated without severe overlap).
Although small values of p may give very small values of
Az, for certain values of z, a single choice of p for all z
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Fig. 6. Exact and approximate power patterns at large axial distance;
ka=1538.23; kwy =174.3; z/z;, =250.119.

results in a simpler computer program. Thus the choice of
p=[a/w]+1
appears to us to be nearly optimal. .

V. NUMERICAL RESULTS

Numerical results for 0<<z<zy; were computed for a
symmetrical Gaussian beam

Ey(x,O):exp[—(x—a/2)2/2w02]

for a waveguide with ka=973.4, kw,=110.3. Computa-
tions were made using both an exact mode series (cf. (14))
and the hybrid-image representation (42). The two meth-
ods gave graphically indistinguishable results over this
range, which are displayed in Fig. 5. Note that 5 or 6 is the
maximum distinguishable number of beams in this case,
and is a suitable choice for p.

Fig. 6 shows that for very large values of z, the accuracy
of the paraxial approximation has begun to deteriorate
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slightly. In a future paper, we will examine how to obtain
closed-form expressions for this correction, but meanwhile
we note that even for z=~250z,,, the accuracy of the
paraxial expression is quite good. If we take this example
to model an optical waveguide with =100 pm, w, =707
pm, the distance 250z, represents about a 50-m length of
waveguide which of course is a huge number of wave-
lengths. We thus see that the paraxial approximation is
capable of excellent accuracy over modest lengths of wave-
guide, even at optical frequencies.

VL

We have described a hybrid technique for computing the
fields of a paraxial beam propagating in a multimode
waveguide for very long distances. The method relies on
the periodic Fourier and Fresnel imaging properties of the
guide, and is highly efficient for beams of moderate width
compared to either full modal or ray approaches. Numeri-
cal comparisons have confirmed the accuracy of this
method.

This approach should be susceptible to generalizations in
several directions, For a beam with oblique incidence (as in
[6]), the parabolic approximation of Section II can be
modified when the dominant propagation factor in the
z-direction is other than exp(—ikz) as indicated in [12].
Higher order corrections to the paraxial solution for a
diclectric slab similar to those for the metallic guide given
in Section II can also be obtained. Slowly varying guide
widths and inhomogeneous refractive index profiles should
also be tractable by similar methods. Investigations into
these areas are currently being made, as is the generaliza-
tion to waveguides of circular symmetry.

CONCLUSION

APPENDIX A
THE PARAXIAL APPROXIMATION FOR A DIELECTRIC
SLAB

Consider the step-index dielectric slab waveguide shown
in Fig. 7. The slab has thickness b and refractive index n,,.
The cladding index is #,, and both media are assumed to
be nonmagnetic. The TE modes for this waveguide have
the field distribution [1]

’exp(—ikaz )A exp[k\/oc2 —nix ]sinq)(a),

x<0
exp(—ikaz)Asin[k n%—a2x+q§(a)], 0<x<b
5= exp(—ikaz)Asin[ka+¢(a)]
k -exp[—-k\/az——nlz_(x~b)], x=b
(A1)

where A is an arbitrary constant amplitude. Here k is the
wavenumber of free space, ka is the propagation constant
of the mode, and ¢(a) is the phase shift associated with the
Goos~Hinchen effect:

¢(a)=sin"'[kby/n —o? /7] (A2)
where V is the so-called normalized frequency:
V=kbyni—n?. (A3)
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Note that V>1 for a highly multimode guide.
The characteristic equation which determines the eigen-
values a is obtained by requiring H, to be continuous at

x=h:
sin| ky/n3 —a? b+2¢(a)] =0.

The paraxial approximation to these modes (a~n,) is
found as in [10] by reckoning ¢(a) to be small. From (A.2)
and (A.4), we then obtain approximately

(A.4)

sin[ kyn3 —a?b(1+2/7)]=0

[, min?
&, =/ Mo 212 2
k**(1+2/V)

i.e., the propagation constants for a parallel-plate wave-
guide of slightly larger width a=5b(1+2/V"). The corre-
sponding field within the slab is, from (A.1),

or

(A.5)

exp(—ika, z)A sin[lq/n(z)—oz2 (x+b/V)], 0<x<b.

(A.6)
Here we have
2.2 4_4
&, =ny— Al 5 +0 U
2k (142/V)* | K23 (1+2/V)
mn?

O ————. Al

[k4b4(1+2/V)4 (A7)

For most optical waveguides the first error term is likely to
be the larger, but in any case we require

k*p?V3>1and k*b*>1.
APPENDIX B
PROPERTIES OF c,( p, q) and #;(z|7)

In this Appendix, we derive a number of useful proper-
ties of the Gaussian sums ¢, ( p, g) defined by (27), and the
theta-function #;(z|7), defined by

(9]

By(z]7)= 2

m=—oo

(B.1)

where, for our purposes, z is an arbitrary complex number,
while 7 lies in the upper half-plane Im(7)=0. If 7 lies on
the real axis, we likewise require that z be real, and in this
case #;(z|7) must be treated as a generalized function.
From Whittaker and Watson [26], we can obtain a

exp(m*mit+2miz)
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number of periodicity and parity relations:

dy(z|7)=05(—z|7) (B.2)
B5(z|m+2n)=8,(z|7) (B.3)
H(ztna|r)=d,(z|7) n=0,=1,*2,

(B.4)
&;(z+nwr|7)=exp(—min’t—2inz)#;(z|7). (B.5)

All four relations are easy consequences of the definition
(B.1). It is also interesting to note that &, satisfies the
parabolic equation

ai 3%8(z]7) 99, _
4 a 22 a’r n
which is obtained from the Helmholtz equation in the
paraxial approximation, and is similarly easily verified (cf.

®))-
For real z, &, at 7=0 (as a generalized function) can be
evaluated as [24], [30]:

0 (B.6)

o0

2

m=—00

¥;(z10)= exp(2miz)=ax :ii 8(?~nw).

(B.7)

Another useful relation, which holds for general z and T,
is obtained from Jacobi’s imaginary transformation [26]:

1‘}3(Z|'r)='rAl/zexp(iw/4+z2/fn'i7)03(2/'r|—~l/T).
(B.8)
This relation can be verified using the Poisson summation
formula [24].

The identities which form the basis for the “image-
splitting” properties of the theta-function can be deduced
from a more general expression given by Krazer [31] (see
also [32]). These relations, which might be referred to as
modular relations, are

p—1

(z|r)= go exp(vrir27+2irz)03(p[z+77r7]|p27)
(B.9)
as(zp):%pgooa(ﬁ;fl;ig ) (B.10)

Equation (B.9) is verified by writing m=pl+r, r=
0,1,---(p— 1 in (B.1); (B.10) follows by substituting (B.1)
into the right-hand side. Actually (B.9) and (B.10) can also
be derived from eac¢h other using (B.8) as well.

An integral which the authors could not find in the
literature is given in the following:

fco exp(—ax? +bx )%, (x|7) dx

b .
= \/_Z; exp(b2/4a)03(2—a|7+ # )
| (B.11)

The derivation is straightforward, proceeding by in-
tegrating (B.1) term-by-term.
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Finally, we note that
[e¢]
8, (iz|ir)=exp(z?/77) exp[—(z+m7r7)2/7r7]
m=—o0

(B.12)

i.e, &, can be related to a string of displaced Gaussian
functions.

The Gaussian sums c,(p,q) depend on the prime fac-
torizations of the integers p and ¢. The properties of these
sums can be derived by following methods outlined in [25]
or [33] for the special case of ¢y( p,q). Here, we will only
present the results, and refer the interested reader to [25]
and [33] for the methods of proof (see also [34], [35], and
[38D).

In order to describe the properties of ¢, (p, q), we will
use the following notations from number theory [25]:

k|m: k divides m (without rernainder);
kim: k does not divide m;
(k,m): greatest common factor of & and m;
a=b(mod m): m|(a—b);
(k|m): Legendre’s symbol defined for odd primes
m;
+1, if t2=k(mod m) for some integer ¢
(kjm)=4 and kZ0(mod m)
—1, if t?=k(mod m) for any integer ¢
(Ojm)=0.
The following properties are elemehtary:
(P qtp)=c,(p.q) (B.13)
uip(Pra)=c,(P,q) (B.14)
c,(1,9)=1 (B.15)
I, pin
,0)= B.16
Wp0={y P mae

Reciprocity law (for g odd):

e(prq)={a/2p " exp(i/a—min/2pq)
[1+exp(—mipg/2—min)]c¥(q. p) (B.17)

where * denotes complex conjugate. In particular, from
(B.15) and (B.17) there follows

e (pi1)= exp(7i/4—min*/2p)

2p

[1+exp(—mip/2—min)].

(B.18)
We need only consider the case when ( p, g)=1, because
of

¢ (p.q),  kin

c,(kp, kq)Z{O, i,

Also, we need only consider the case when p is odd or a
power of 2, because if (p;, p,)=1

e(p1P2q)=c,(pr1sapy)ea( 2o qpy).  (B.20)

These cases can be reduced to the case n=0, since if p is

(B.19)
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Asymptotic Eigenequations and Analytic
Formulas for the Dispersion Characteristics
of Open Wide Microstrip Lines
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Abstract— Through the matched asymptotic expansions technique,
asymptotic eigenequations for the even and odd modes of an open wide
microstrip transmission line are derived. The eigenequations, and simplifi-
cations thereof which do not involve integration, can be solved easily for
the effective permittivity. Even though d/W is assumed to be small, the
solutions are good even if d/W=0.8 when compared with the numerical
results of Jansen [19]. From these eigenequations, asymptotic formulas for

Manuscript received December 16, 1980; revised March 2, 1981. This
work was supported by Schlumberger-Doll Research Center and the Joint
Services Electronics Program under Contract DAAG-29-80-C-0104.

W. C. Chew was with the Research Laboratory of Electronics, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139. He is now with Schlum-
berger-Doll Rescarch, Ridgefield, CT 06877.

J. A. Kong is with the Research Laboratory of Electronics, Department
of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139.

the effective permittivity can be derived which are excellent when d/ W=
0.2. When the frequency goes to zero, we reproduced the asymptotic
formula derived under the quasi-TEM approximation in [8]. The asymp-
totic analysis provides good physical insight into the problem, otherwise
unavailable from numerical analysis.

I. INTRODUCTION

VER SINCE the introduction of microstrip transmis-

sion lines, the field of microwave engineering has
been inundated with papers on the calculation of the
characteristic impedance and effective permittivity of a
microstrip transmission line. Due to the increasing use of
microstrip lines in the high-frequency regime, numerous
papers on the study of the dispersion characteristics and
higher order modes of the line have been published. Excel-
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